Fly Ash Slurry Injection (FASI) of Bituminous Thermal Cracks

Schedule

- What is Fly Ash Slurry Injection (FASI)
- Thermal Cracks and Why They Depress
- Pavement Rehab Strategies
- Special Provisions
- Upcoming Projects
- Questions

Brief Overview of FASI

- What is FASI?
 - FASI consists of injecting a fly ash slurry into the voids beneath thermal cracks, stabilizing the soil and filling the voids.
 - Initially used in Kansas along I-70 in the 1990s
 - Kansas reported it to be a cost effective treatment for thermal cracks
 - Used on a Dawson County project in 2010
 - Overton to Sumner Road and Road 756

Brief Overview of FASI

- Goal of FASI
 - Reduce the reflective cracks
 - Prevent cracks from depressing, in a cost effective way.
- Where it will be used
 - Districts 5, 6, 7, and 8 initially.
 - Currently 2 projects planned for each district
 - Statewide eventually.

Schedule Update

- What is FASI
- Thermal Cracks and Why They Depress
- Pavement Rehab Strategies
- Special Provisions
- Upcoming Projects
- Questions

Reason Cracks Depress

- Initially caused by a large temperature difference between the base and surface of the pavement, creating tensile forces.
- Tensile forces > AC strength, crack forms, water enters and weakens the subgrade.
- Moisture eventually degrades base pavement
- Traffic loading causes the cracks to depress

Schedule Update

- What is FASI
- Thermal Cracks and Why They Depress
- Pavement Rehab Strategies
- Special Provisions
- Upcoming Projects
- Questions

Pre FASI - Limited Rehab Options

Surface Sealants and Patching

- Short term fixes
- Slows the development of the cracks

Mill/Fill

- Cleans up surface distresses
- Medium term fix. Cracks reappear at a rate of 1" per year.

Mill/Fill with a Geo-textile

- Retards crack reappearance and potentially seals crack from further moisture.
- Geo-textiles can be difficult to work with.
- Similar cost per Sq Yd as 1-2" of asphalt

Partial or Full depth recycles

- Full depth recycle only way to permanently eliminate cracks
- Long term fix. Costly, grade raise, not always practical or desired (high traffic, thick pavement)

Incorporating FASI into the Rehab

- Initially, looking to use this strategy on mill/fill projects.
- Expand to more armor coat surfacing type projects if effective.
 - Pavements we would target:
 - Structurally sound
 - Thermal cracks the main distress

Schedule Update

- What is FASI
- Thermal Cracks and Why They Depress
- Pavement Rehab Strategies
- Special Provisions
- Upcoming Projects
- Questions

Material Requirements

- Fly Ash Slurry mix design report submitted to M&R a minimum 15 days prior to beginning construction.
- Minimum 7 day Compressive Strength of 400 psi
- Traffic will not be placed on driving lanes until the material has reached initial set.
 - Initial set has been reached when it can be stepped on without sticking.

Construction Methods

Injection Holes

- Department will determine which cracks will be filled
 - Not looking to treat every crack, mainly the depressed ones.
- Drill a minimum of 2 holes per 12' of crack length
- Holes shall be approximately 6" from the crack and 12" from the pavement edge or center line.
 - Expect outside holes closer to the wheel paths.

FLY ASH SLURRY INJECTION DETAIL

* - *

Construction Methods

Slurry Injection

- Temporarily plug adjacent hole if doing so will force slurry into the crack. Also used to prevent back flow.
- Control injection operation to prevent pavement lift greater than ½". Check with a 10' straight edge.
 - Intent of injection is to fill the void and remove depressions while being able to open to traffic without immediate milling.
- If pavement lift produces an unacceptable ride, pavement will be milled prior to opening to traffic, at no cost to the department.

Construction Methods

Clean Up

 Any overflow material shall be squeegeed from the surface as directed by the Engineer

Construction Methods

Weather Limitations

- Do not perform FASI if the air temperature is 50° F or below or if the ground if frozen.
- Do not perform FASI if weather conditions prevent proper handling and placement of materials.

Sampling and Testing

- Determine the density of the slurry prior to starting work each day.
 - Density calculated in lb/gal by using Gardner Cup
 - Used as a measure of consistency
 - Used for calculating total slurry applied (T).
- Use provided table to record the daily densities and calculate the (T) values.
 - Include table in project file and submit to M&R.

Sampling and Testing

- Department will mold a minimum of one set of test cylinders per day
 - Set consists of four cylinders, two of which will be tested on the 7th day and two held in reserve.
 - The average of two compressive strength tests will be used to determine payment.

Flv Ash Slurry Injection of Bituminous Thermal Cracks

			С	ylinder Re	cords				
	Required Daily Cylinder ID (1 set)		Average Compressive Strength (psi)	Addition Cyling ID (Option	der	Average Compressiv e Strength (psi)		Pay Factor (Lowest Average Strength)	
D	ate Station Ran		Gardner Cup Density e (lbs/gal)	Total Daily Volume (gal)	Wei	ght = Weig *B C÷2		Daily ght = 2000 T)	

Sampling and Testing

- Pay Schedule
 - 400+ psi = 100% pay
 - 300-399 psi = 80% pay
 - <300 psi = 40% pay

Method of Measurement

- Pay Items
 - Fly Ash Slurry Injection
 - Paid for by the Ton
 - Water, Cement, and Admixtures are subsidiary
 - Injection Holes
 - Measured by the number of holes drilled.
 - Monitoring for pavement lift subsidiary to the injection holes
- No adjustment in contract unit prices are made regardless of amount of over/under-runs

Additional Special Provisions

- 1/2" pre-mill due to residual fly ash slurry
 - Anticipating the Contractor's preference to not incorporate this material into the RAP
- 14 days between FASI and first Mill
 - Due to public complaints on County project
- 30' ski on milling machine for smoothness
- Will Include a core report if available

Schedule Update

- What is FASI
- Thermal Cracks and Why They Depress
- Pavement Rehab Strategies
- Special Provisions
- Upcoming Projects
- Questions

Upcoming Projects

Projects for 2012

- Agate South, STP-29-4(107), CN 51361 FASI w/
 District Armor Coat
 - 3" AC on 6" crushed rock base, 220 ADT 10% trucks
 - 10.5 miles in length
 - Low cost maintenance strategy was desired
- Hyannis North, STP-61-3(109), 61473 FASI and Mill/Fill 3"
 - 4" AC on 4" Bit Sand, 400 ADT, 10% trucks
 - 7 miles in length

Upcoming Projects

Projects for 2013

- N Jct US 83 West, STP-23-2(125), CN 61475
 - FASI and Mill/Fill 3.5"
- Sparks West, STP-12-2(105), CN 80877
 - FASI and Mill 3"/Fill 4"

Upcoming Projects

Beyond 2013

- Danbury to Lebanon, STPD-BH-89-2(110), CN
 70890, FY 2014
- Wauneta to Hamlet, STP-6-2(130), CN 71127,
 FY 2015
- Burwell North, STP-BH-11-3(118), CN 80798,
 FY 2015
- I-80 North, STPD-27-2(104), CN 51277, FY 2017
- Additional projects likely

Questions?